Digital Forensics and Incident Response

By Kat Nayan

\$whoami

Kat Nayan
4th year CSEC
DFIR L O V E R <3
cat mom to dumpy and uni
i paint on shoes sometimes
Sigma Psi Zeta Sorority, Inc., (ex) WiCyS Secretary, (ex) WiCyS Secretary,
WiC Outreach Co-Head
@meekzen on disc

Agenda

Introduction Lifecycle

Introduction Process Significance

Challenges

Incident Response

Digital Forensics

Incident Response Introduction

Introduction Incident Response

- The steps used to prepare for, detect, contain, and recover from a data breach
- Effectively manage the incident so that damage is limited
- Want recovery time, costs, and collateral damage kept to a minimum

Incident Response Lifecycle

Introduction Lifecycle

Lifecycle Preparation

- Develop incident response policies and procedures
- Identify incident response team roles and responsibilities
- Establish communication protocols
- Identify necessary resources (e.g. tools, personnel, training)
- Conduct regular testing and training

Preparation

Lifecycle **Detection & Analysis**

- Monitor for unusual activity (e.g. network traffic, system logs)
- Review logs for potential indicators of compromise (loCs)
- Conduct forensic analysis to determine the nature and scope of the incident
- Classify the incident based on severity
- Notify appropriate incident response team members

Detection & Analysis

Lifecycle **Containment & Eradication**

- Identify and isolate affected systems or network segments
- Limit the spread of the incident
- Prevent additional damage or data loss
- Preserve evidence for analysis and investigation
- Notify appropriate incident response team members

Containment Eradication & Recovery

Lifecycle Recovery

- Restore systems or data from backups
- Verify that data integrity has been maintained
- Test restored systems and applications for functionality
- Reconnect systems or networks to the production environment
- Notify appropriate incident response team members

nality environment ers

Containment Eradication & Recovery

Lifecycle **Post-Incident Activity**

- Assess the effectiveness of the incident response process
- Identify areas for improvement
- Document lessons learned and share with appropriate stakeholders
- Communicate the incident response process and outcomes to relevant parties
- Monitor for potential residual effects or follow-up incidents

Post-Incident Activity

Digital Forensics Introduction

Introduction **Digital Forensics**

- A subfield of forensic science concerned with the identification, acquisition, analysis, and reporting of data stored electronically, which is referred to as evidence
- Must be careful when handling as it will/may be presented in a court of law

Introduction Artifacts

- Ways to tell something was executed
- Things you can collect from a dead system: • Passwords, Logs, Hidden Data, SUID/SGID Files

• Prove execution:

- Amcache, Shimcache, Prefetch, MUICache, UserAssist, Jumplists, NTUSER.DAT, etc.
- Imply Potential Execution:
 - shellbags, .LNK files

Digital Forensics Process

Process Procedure

There are **four** main steps to a digital forensics investigation process:

- Collection and Acquisition
- Preservation of Evidence
- Analysis
- Reporting and Presenting

Process – Procedure Collection

- If the system you are collecting data from is still alive, unplug the network and plug in somewhere else that isn't connected to anything else
- Acquire volatile data
 - Volatile Data
 - Non Volatile Data
- Used to gather information about users, determine what happened, create a timeline, discover tools and exploits

Process – Procedure Preservation

- Establish a chain-of-custody
 - Maintain a detailed record of how evidence has been handled from the moment it was collected to the moment it was presented in court

• Includes:

- Date and time of evidence collection
- Information of people processing evidence
- Locations and descriptions of evidence
- Verify the evidence is intact and has not been altered
- Evidence is stored in a tamper-proof manner
- MD5 and SHA1 are commonly used (integrity verification and prevents) collisions)
- Timestamps and timelines

Process – Procedure Analysis

- Important to analyze content that may have been deleted or data that is typically inaccessible
 - Analyze files and file systems
 - Construct a timeline examine MAC times
 - Modified
 - Accessed
 - Created
 - Look for artifacts
 - Search for keywords and perform hash analysis

(this is supposed to be a clock.....)

Process – Procedure Reporting

- Purpose is to report legally admissible evidence to a court of law
- Make sure all steps are included:
 - Equipment used
 - Methodologies
- Facts and data to support or reject the statement
- Included analysis details during your report
- Statements and conclusions should be accurate

Let's Go!

Digital Forensics Tools

Tools Tools/Frameworks

- Autopsy (Free)
- FTK(\$\$\$)
- FTK Imager (Free)
- EnCase (**\$ \$ \$**)
- Volatility (Free)
- SIFT (Free?ish?)
- Axiom (\$\$\$)
- etc.

LI
Ap

Digital Forensics Challenges

Challenges **Anti-Digital Forensics**

- What is ADF?
 - Acts aimed to make the discovery of illegal activities by a user harder to discover
- To manipulate, erase, or obfuscate digital data
- Make examination difficult, time consuming, or virtually impossible
- Methods include:
 - Overwriting or wiping data
 - Hiding/obfuscating data
 - Steganography or cryptography

Thank you! Any Questions?

kyn3603@rit.edu or @meekzen on discord

